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Key Points 

 
In this presentation, a new method is given to eliminate 
all first order internal multiples under 1D normal 
incidence. 

 
This method 
1. is derived in a reverse engineering way (not seeking 

higher order terms within inverse scattering series) 
to construct an algorithm to eliminate first order 
internal multiples. 
 

2. achieves the goal directly in terms of data without 
determining the earth. 
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Internal multiple removal 
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Predicting correct amplitude 

Early ideas 

Ramírez and Weglein(2005) 

Elimination first order 
internal multiples generated 
at the shallowest reflector 

Herrera(2012) 

An method to eliminate  
first order internal multiples 
under 1D normal incidence 

(This presentation) 
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The 1D normal incidence version of the leading order algorithm 
given by Araújo et al.(1994) and Weglein et al. (1997) is 
presented as follows: 

Consider the simplest one-generator model example that can 
produce an internal multiple given by Weglein et al.(2003)  
 

b1(z) is water speed migration of the data due to a spike plane wave 
incidence. 
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For this model, the reflection data caused by an impulsive 
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For this model, the reflection data caused by an impulsive 
incident wave ɻ(t-z/c)  is: 

Make a water speed migration of D(t) with 
and pseudo-depths: 

The date is now ready for the internal multiple algorithm.  
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Substituting b1(z) into the algorithm, we can derive the prediction 
(in the time domain): 

From the example it is easy to compute the actual first 
order internal multiple precisely: 

The time prediction is precise, and the amplitude of the prediction 
has an extra power of  T01T10 which is called the attenuation factor. 
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AF1= T01T10 

AF2= (T01T10)
2T12T21 
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AFj   is the attenuation factor for all first order internal multiples 
with a downward reflection at the jth reflector.  

A generalization of the attenuation factor(AF) for first order 
internal multiples(1D normal incidence) is given by the following: 

(using transmission coefficients) 

(using reflection coefficients) 
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The idea to remove first order internal multiples is to build a new 
function in the second integral to remove the attenuation factor. 
 
 
 
 
 
     
 
  With the definition: 
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This method considers only primaries as the input. 

Discussion 



Internal Multiple Removal 25 Yanglei Zou 

Discussion 

The input data contains both primaries and internal multiples. 

First type  
approximation 

all IMj=1 : correct 
all IMj>1: more accurate than  
                 internal multiple attenuator 

Second type 
approximation 

 

all IMj=1 and IMj=2: correct 
all IMj>2: more accurate than the first type 

 
Third type 

approximation 
 

Internal multiples 
arrive after the 
3rd primary 

all IMj=1 , all IMj=2 and all IMj=3 
:correct 
all IMj>3: more accurate than 
the second type 
 

Internal multiples 
arrive before the 
3rd primary 

all IMj=1  and all IMj=2 :correct 
all IMj>2: more accurate than 
the second type 

Χ Χ 
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To deal with this problem, we can first run the internal multiple 
attenuation algorithm, then attenuate the amplitude of internal 
multiples in the data and then run this method using the new data 
to eliminate all first order internal multiples. 
 

Discussion 
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In this section we test 3 different equations under 1D normal 
incidence:  
(1)internal multiple attenuator 
(2)First type of approximation of the new method. 
(3)Second type of approximation of the new method. 
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V=1500m/s       ́ҐмΦлƎκὧά 

V=1700m/s       ́ҐмΦуƎκὧά 

V=1700m/s       ́ҐмΦлƎκὧά 

V=3500m/s       ́ҐпΦлƎκὧά 

V=5000m/s       ́ҐпΦлƎκὧά 

500m 

1700m 

2700m 

5700m 

Model 
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The input data(1D normal incidence) 
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